Neural Combination of ANN and HMM for Handwritten Devanagari Numeral Recognition
نویسندگان
چکیده
In this article, a two-stage classification system for recognition of handwritten Devanagari numerals is presented. A shape feature vector computed from certain directional-view-based strokes of an input character image, has been used by both the HMM and ANN classifiers of the present recognition system. The two sets of posterior probabilities obtained from the outputs of the above two classifiers are combined by using another ANN classifier. Finally, the numeral image is classified according to the maximum score provided by the ANN of the second stage. In the proposed scheme, we achieved 92.83% recognition accuracy on the test set of a recently developed large image database[1] of handwritten isolated numerals of Devanagari, the first and third most popular language and script in India and the world respectively. This recognition result improves the previously reported[2] accuracy of 91.28% on the same data set.
منابع مشابه
Optical Character Recognition for Isolated Offline Handwritten Devanagari Numerals Using Wavelets
This paper presents a method of recognition of isolated offline handwritten Devanagari numerals using wavelets and neural network classifier. This method of optical character recognition takes the handwritten numeral image as input. After pre-processing, it is subjected to single level wavelet decomposition using Daubechies-4 wavelet filter. This wavelet decomposition allows viewing the input n...
متن کاملRecognition of Devanagari Handwritten Numerals using Two Different Approaches
This paper proposes two methods for automatic recognition of Handwritten Devanagari Numerals. In first method, Grid features i.e. structural features are extracted and minimum distance is calculated using these features for classification. In second method, ICZ (Image Centroid Zone) & ZCZ (Zone Centroid Zone) features based on distance information are extracted and given to an already trained N...
متن کاملKannada, Telugu and Devanagari Handwritten Numeral Recognition with Probabilistic Neural Network: A Script Independent Approach
In this paper a script independent automatic numeral recognition system is proposed. A single algorithm is proposed for recognition of Kannada, Telugu and Devanagari handwritten numerals. In general the number of classes for numeral recognition system for a scripts/language is 10. Here, three scripts are considered for numeral recognition forming 30 classes. In the proposed method 30 classes ha...
متن کاملPersian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network
Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...
متن کاملRecognition of Handwritten Devanagari Words Using Neural Network
Handwritten Word Recognition is an important problem of Pattern Recognition. Online handwritten recognition system for Devanagari words is still in developing stage and becoming challenging due to the large complexity involvement. In India, more than 300 million people use Devanagari script for documentation. There has been a significant improvement in the research related to the recognition of...
متن کامل